Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Molecular chirality has long been monitored in the frequency domain in the ultraviolet, visible, and infrared regimes. Recently developed time-domain approaches can detect time-dependent chiral dynamics by enhancing intrinsically weak chiral signals. Even-order nonlinear signals in chiral molecules have gained attention thanks to their existence in the electric dipole approximation, without relying on the weaker higher-order multipole interactions. We illustrate the optimization of temporal polarization pulse-shaping in various frequency ranges (infrared/optical and optical/X ray) to enhance chiral nonlinear signals. These signals can be recast as an overlap integral of matter and field pseudoscalars which contain the relevant chiral information. Simulations are carried out for second- and fourth-order nonlinear spectroscopies in L-tryptophan.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
